论文部分内容阅读
采用溶剂热法,将均苯三甲酸(H3BTC)与硝酸铜进行反应合成了金属-有机骨架(Metal-Organic Frameworks,MOFs)微孔材料Cu-BTC;利用原位合成法,将Cu-BTC负载到介孔/大孔二氧化硅孔道中,获得介孔CuBTC-SiO2材料。通过静态吸附实验,测定了正己烷(n-C6)、环己烷(c-C6)和正癸烷(n-C10)在Cu-BTC及CuBTC-SiO2上的吸附速率曲线,结果表明,将微孔材料Cu-BTC负载在SiO2之后,CuBTC-SiO2中既有微孔又有一定量的介孔,适量的介孔结构可减小其对正己烷的静态饱和吸附量,但增加对环己烷和正癸烷的静态饱和吸附量。实验测得CuBTC-SiO2对c-C6和n-C10都具有更大的静态饱和吸附量。因此CuBTC-SiO2材料可望应用在烷烃的吸附分离上。
The metal-organic framework (MOFs) microporous material Cu-BTC was synthesized by the solvothermal method using the reaction of trimellitic acid (H3BTC) and copper nitrate. The Cu-BTC loading Into the mesoporous / macroporous silica pore to obtain a mesoporous CuBTC-SiO2 material. The adsorption rate curves of n-C6, c-C6 and n-C10 on Cu-BTC and CuBTC-SiO2 were determined by static adsorption experiments. After Cu-BTC was loaded on SiO2, CuBTC-SiO2 contained both microporous and mesoporous mesoporous mesoporous materials. The mesoporous structure could reduce the static adsorption capacity of n-hexane, Static saturated adsorption of decane. The experimental results show that CuBTC-SiO2 has a larger static adsorption capacity for both c-C6 and n-C10. Therefore, CuBTC-SiO2 material is expected to be used in the adsorption and separation of alkanes.