论文部分内容阅读
为了有效地改善模态混叠问题以适应脑电信号的研究,提出了一种改进的集合经验模态分解算法。首先对脑信号进行相关性筛选;然后自适应地从原始脑信号中预测脑电特性信号,融合高斯白噪声生成新型脑信号噪声;最后基于该噪声进行集合经验模态分解。仿真实验表明,新型脑信号噪声不仅具有自适应特性,而且可以更好地解决脑信号经验模态分解中的模态混叠问题,同时也证明了该算法在脑电研究领域的理论和应用价值。