基于DPM模型V型球阀固液两相流冲蚀研究

来源 :流体机械 | 被引量 : 0次 | 上传用户:wzmhua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对V型球阀应用在流体介质中含有固体颗粒、纤维等工况场合问题,以DN50的V型球阀为研究对象,通过FLUENT软件对3种不同开度的V型球阀内固液两相流场进行分析,运用DPM离散相模型,液相视为连续介质,固相颗粒设置为离散介质,在拉格朗日坐标系下求解颗粒运动方程,采用迭代计算方法实现固液两相耦合.通过模拟得到V型球阀内液固两相流场特性,得到颗粒的运动轨迹图和冲蚀磨损分布规律.结果表明:在转动角度30°和50°时,阀内负压明显大于80°时,从-56.358?kPa降至-9.553?kPa;随着开度增大,阀内最高流速由55.959?m/s2降至4.865?m/s2,阀内流速逐渐局域平缓;冲蚀速率也随着开度增大而下降,从1.22×10-3?kg/(m2·s)下降到3.02×10-8?kg/(m2·s),这是因为开度增大,流速趋于平缓,减小了颗粒与壁面的碰撞,抑制了阀门的冲蚀破坏现象.
其他文献
为获得环隙式离心萃取器运行时混合区内真实气-液-液三相流流动特性,采用欧拉-欧拉多相流模型和群体平衡模型(PBM),并分别采用模拟软件ANSYS自带的MUSIG和直接正交矩量法(DQMOM)求解群体平衡模型,对70?mm环隙式离心萃取器混合区内气-液-液三相流进行了CFD-PBM模拟研究,以获得气-液-液三相流的相分布和液滴平均直径(d32)分布.结果表明,混合区内有机相在两相混合液中分布比较均匀,但在局部地区形成了富有机相区和富水相区;流体的湍流动能和湍动耗散率在自由液面处和转筒外壁处较大,而在混合区旋
为提高立式蜗壳泵的运行稳定性,数值模拟了泵内部流场,获得了不同工况下的径向力分布规律.利用“COMSOL”软件计算了“湿态”下泵轴承-转子系统瞬态响应,对比了单、双蜗壳模型泵转子的振动特性,计算了双蜗壳模型泵转子的振动位移、轴心轨迹,分析了小流量工况下导轴承油膜压力和厚度分布规律.结果表明:2种蜗壳型式下,叶轮承受的径向力均具有周期性,且随着偏离设计工况点,叶轮径向力逐渐增加;与单蜗壳模型泵相比,双蜗壳模型泵的径向力显著减小,转子振动减弱,在小流量工况下,转子在轴承处的振动峰对峰值降低了39.56%,叶轮
对双温蒸发压缩/引射CO2热泵系统进行了热力学分析,分析了气体冷却器出口温度、高低温蒸发器温度对引射系数、压力提升比、系统COP的影响和相对传统双温蒸发系统的COP提升情况.结果表明,随着气体冷却器出口温度升高,引射系数增加,压力提升比不变,COP逐渐下降;随着低温蒸发器蒸发温度升高,引射系数增加,压力提升比下降,COP几乎不变;随着高温蒸发器蒸发温度升高,引射系数下降,压力提升比上升,COP增加;在相同的工况下,压缩/引射系统的COP相对于传统双温蒸发系统的COP提升率范围为3.7%~18.8%.气体冷
为了比较回热器对不同型式CO2热泵系统性能的影响,建立了5种带回热器CO2跨临界循环的热力学模型,分析了吸气过热度、蒸发温度、高压压力和气体冷却器出口温度对制冷、制热系数的影响,以及蒸发温度、气体冷却器出口温度对最优高压压力的影响,给出了不同循环的适用条件.结果表明:带膨胀机单级、双级压缩系统综合性能较好,制冷COP可分别达到2.83和3.2,制热COP可分别达到3.82和3.6,但都不适合加回热器;回热器对CO2跨临界双级带节流阀回热器循环(TSCV+IHE)性能提高最大,过热度平均每提升5?℃,COP
基于逾渗理论,求解了密封界面不同网格层数下的逾渗阈值;分析了两粗糙表面的接触状态;根据W-M函数及其变式,通过MATLAB软件模拟,获得了不同表面形貌下接触式机械密封界面的孔隙率和密封间隙高度比.研究结果表明,两表面的形貌参数相同或相近时,侧接触特征明显,两表面的形貌参数相差越大,越接近于粗糙面与平面的接触;基于密封界面侧接触的初始孔隙率数值表达式与MATLAB模拟结果一致,验证了侧接触的正确性.本文研究为揭示机械密封界面泄漏机理和完善接触力学分析提供了新思路.
针对低温工况下某轨道交通空压机组用板翅式换热器发生冰堵故障问题,开展了空压机组高低温试验研究,获得了不同工况下压缩机组运行的温度参数,利用该温度参数计算了压缩气体流经各部件时的析水量并结合空压机组的工作特点,剖析了换热器冰堵产生的主要原因,提出了一种消除冰堵故障的解决方案并进行了试验验证.研究成果为空压机组在低温工况的安全可靠运行提供保障.
以核电站用某型高转速辅助给水泵转子为研究对象,为验证地震工况下转子动力学是否满足设计要求,对转子进行数值模拟分析,主要包括转子的各阶临界转速及振型图;转子不平衡质量引起的受力载荷;地震工况下的叶轮运行位移量与激励频率关系曲线等.模拟计算结果表明,该高转速泵临界转速满足设计要求,以第一弯曲临界转速为例,第一阶弯曲临界转速(21200?r/min)大于额定转速的1.25倍(10000?r/min);临界扭转频率(231?Hz)满足设计要求(大于1.1倍的激励频率(146.6?Hz));在最恶劣的地震工况下转子
针对传统超高温气体调节阀可调比范围小,特别是在小开度情况下密封面磨损较为严重,无法满足长寿命生产需求的问题,设计了一种夹套式水冷结构凸轮挠曲调节阀.采用ANSYS对该阀门的流场、温度场及应力场进行了热流固耦合计算,给出了阀腔内高温空气速度/温度分布、阀体温度分布、阀体应力分布等计算结果,同时评估了高温空气介质温度突变对阀体的冷热冲击影响,以及冷却水量对阀体温度分布的影响.仿真结果表明流道内最高流速可达550?m/s以上,且最高温度和最大应力区域主要位于阀座处;阀门两端给定-25,0,25?kN时,流道内应
对以R290为工质的闪发器中间补气的高温热泵系统进行性能分析,得出:随补气前压力比增大,R290闪发器高温热泵系统的平衡补气压力增大,相对补气量减小,压缩机总功耗减小,系统制热量减小,压缩机排气温度升高.系统存在最佳补气前压力比,使系统获得最优的性能系数.蒸发温度为30?℃、冷凝温度为85?℃时,补气前压力比为1.5时获得最大性能系数3.61.随蒸发温度增加,平衡补气压力增加,相对补气量减小,压缩机总功耗增加,制热量增加,系统性能系数减小.随冷凝温度升高,相应平衡补气压力升高,相对补气量增大,压缩机总功耗
针对硬密封阀门因密封面磨损而导致其密封失效的问题,采用Archard磨损模型,并借助ANSYS有限元软件模拟密封面的接触,以密封副初始挤压量为0.08?mm的硬密封为例,利用离散化的计算方法逐步对0.02,0.04,0.06?mm磨损深度下的密封面接触压力进行仿真求解,计算出不同磨损深度下密封面的正压力及穿透量并进行分析,推测其磨损趋势并得到密封面的磨损寿命,计算得到当密封失效时即密封副不再有挤压量时,阀门的使用寿命可达5854次启闭,并发现硬密封的磨损可大致分为3个阶段进行.通过此类方法预测阀门使用寿命