论文部分内容阅读
针对自适应敏感度分割(self-balanced sensitivity segmenter, SuBSENSE)算法在真实复杂场景下距离阈值更新适应性差,导致检测效果不佳的问题,提出一种基于背景复杂度自适应距离阈值修正的SuBSENSE算法。结合时间一致性和空间一致性定义了一种背景复杂度的度量方式,以此为标准,通过距离阈值修正策略获取准确的距离阈值,以便获得更好的检测效果。本算法与像素自适应分割(based adaptive segmenter, PBAS)算法和传统SuBSENSE算法进行了对比