论文部分内容阅读
提出了一种全变分流边与M~2GGD概率密度分布相结合的自然图像分割方法。由于自然图像经常受噪声的污染,导致分割的区域结果视觉效果差,而区域间的边界具有较好的非同质区域区分能力,于是提出了利用全变分流来提取边界,并结合M~2GGD概率密度分布构建具有空间约束能力更强的图像分割方法。由于其能量最小化是NP难问题,通过设计最大期望最大似迭代优化方法,将待优化模型的区域项和边缘项,分别转化为多层图割模型的t-link以及n-link,并利用最大流/最小割算法,可求得全局近似最优解。最终,通过在合成的噪声污染