Selection of regression models for predicting strength and deformability properties of rocks using G

来源 :International Journal of Mining Science and Technology | 被引量 : 0次 | 上传用户:wtbcgs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy. Recently, many regression models have been presented for prediction of mechanical parameters of rocks regarding rock index properties. Although statistical analysis is a common method for developing regression models, but still selecting of suitable transformation of the independent variables in a regression model is diffcult. In this paper, a genetic algorithm (GA) has been employed as a heuristic search method for selection of best transformation of the independent variables (some index properties of rocks) in regression models for prediction of uniaxial compressive strength (UCS) and modulus of elasticity (E). Firstly, multiple linear regression (MLR) analysis was performed on a data set to establish predictive models. Chen, two GA models were developed in which root mean squared error (RMSE) was defned as ftness function. Results have shown shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength / elasticity properties and index properties of rocks by simple formulation and accepted accuracy.
其他文献
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
目的:探讨细节管理对提高消毒供应中心护理人员风险意识及护理管理工作满意度的影响.方法:2015年7月-2015年10月我院消毒供应中心实施护理细节管理措施,并与2015年4月-2015年
使用C18键合硅胶固相萃取膜,研究了环境水样中邻苯二甲酸酯(PAEs)类化合物的固相膜萃取预富集方法,探讨了影响萃取效果的因素;并以环境水样为介质,比较了固相膜萃取与液-液萃
1问题的提出rn我公司现有两条φ3.6m×70m带余热发电的中空窑水泥生产线,窑尾装有20t/h余热锅炉两台,配有3台4GC-8×8型电动锅炉给水泵.rn
石油野外勘探是石油企业能够发现新的石油资源的一项很重要的工程,但是在进行野外勘探的过程中会出现诸多不安全的因素,这就需要野外生产班组长有一个很好的安全管理能力或者
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
近日,在中国城市科学研究会召开的中国住宅产业化联盟筹备会上,全国政协环资委副主任、住房城乡建设部原副部长仇保兴针对我国住宅产业化发展的现状和未来趋势进行了总结分析
现代麻醉和外科技术的发展,满足了部分高龄髋关节疾病患者通过手术达到治疗的目的,但由于人工髋关节置换手术创伤大,出血多,骨水泥毒素对身体的副作用等,使髋关节置换手术带有相当大的危险性,而老年人全身各脏器机能减退,耐受力差,多数人又伴有慢性基础疾病,所以术中风险大大增加.针对其存在的不安全因素,我们重视术前访视,充分了解每个患者生理心理社会状况,建立护理评估表,在手术期间注意严密观察,加强护理配合,使
A basic method to calculate van der Waals dispersion force distributions for submicron superquadric particles in particle-wall systems is presented. The force d
期刊
期刊