论文部分内容阅读
为了解决化工领域数据建模小样本、不适定性、非线性等问题,提出了一种基于核主元分析(KPCA)和最小二乘支持向量机的软测量建模方法,用核主元分析对输入变量进行数据压缩,消除变量之间的相关性,运用PSO算法对核参数进行了寻优,通过交叉验证的方法对支持向量机进行参数选择。将其用于双酚A(BPA)软测量建模的研究结果表明:方法具有学习速度快、泛化能力强等优点,为BPA软测量建模的在线实施提供了方便。