论文部分内容阅读
The electromagnetic characteristics of cold wall crucible, especially its field strength and distribution, were evaluated experimentally, in which the effects of parameters as input power and position were also discussed. The results showed that the magnetic induction intensity (B) increased with the increase of the input power. Along the radial direction inside the cold crucible, B is the strongest at the edges, and gradually attenuated from the edges to the center. While along the axial direction, B is the strongest at the center, and gradually attenuated from the center to the edges. Corresponding with the calculation on electromagnetic field distribution inside the coil without cold crucible, the effects of cold crucible on the electromagnetic field have been reduced by comparing measured and calculated results. However, it was also found that the value of B strength will be decreased to about 50% of its original proposition without cold crucible due to the electromagnetic shielding effect, which will be the understanding for melting turns in cold crucible.
The electromagnetic characteristics of cold wall crucible, especially its field strength and distribution, were evaluated experimentally, in which the effects of parameters as input power and position were also discussed. The results showed that the magnetic induction intensity (B) increased with the increase of the input power. Along the radial direction inside the cold crucible, B is the strongest at the edges, and gradually attenuated from the edges to the center. While along the axial direction, B is the strongest at the center, and gradually attenuated from the center to the edges. Corresponding with the calculation on electromagnetic field distribution inside the coil without cold crucible, the effects of cold crucible on the electromagnetic field have been reduced by comparing measured and calculated results. However, it was also found that the value of B strength will be decreased to about 50% of its original proposition without cold crucible due to the electromagnetic shield g effect, which will be the understanding for melting turns in cold crucible.