论文部分内容阅读
KNN算法是一种思想简单且容易实现的分类算法,但在训练集较大以及特征属性较多时候,其效率低、时间开销大.针对这一问题,论文提出了基于模糊C-means的改进型KNN分类算法,该算法在传统的KNN分类算法基础上引入了模糊Cmeans理论,通过对样本数据进行聚类处理,用形成的子簇代替该子簇所有的样本集,以减少训练集的数量,从而减少KNN分类过程的工作量、提高分类效率,使KNN算法更好地应用于数据挖掘.通过理论分析和实验结果表明,论文所提算法在面对较大数据时能有效提高算法的效率和精确性,满足处理数据的需求.