论文部分内容阅读
运用无穷递降法证明了:方程X^4-10X^2Y^2+5Y^4=Z^2和X^4-50X^2Y^2+125Y^4=Z^2都没有适合gcd(X,Y)=1以及2|XY的正整数解(X,Y,Z).由此推知:方程x^2+y^4=z^5没有适合gcd(x,y)=1的正整数解(x,y,z),上述结果解决了广义Fermat猜想的一个特殊情况。