论文部分内容阅读
为了提高秋季作物分类精度,以多时相的Sentinel-2为数据源,以生育进程相近的秋季作物为分类对象,提出一种基于Relief F算法和信息熵改进分离阈值算法(Modified ISEa TH-based entropy,EMISE)的多评价准则融合特征优选算法——改进分离阈值组合式特征优选算法(Modified EMISE-based Relief F,Re EMISE),并分析了不同特征对秋季作物分类的重要性。首先,利用Relief F算法对特征进行初选,结合EMISE算法对2种评价准则进行融合