论文部分内容阅读
Abstract
CuInSe2 powders synthesized by ball milling were printed on In2S3/TiO2/FTO/glass substrates, resulting in superstrate solar cells. Although particle structure of CuInSe2 in the layer remained after heating at 600 °C under N2 gas, photovoltaic effects were observed; the open-circuit voltage and short-circuit current density were 0.45 V and 5.6 mA/cm2, respectively. The effects of annealing time on the structural, optical and photovoltaic properties of CuInSe2 were studied by scanning electron micrograph (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV-Vis reflectance absorption spectroscopy. The CuInSe2 solar cells were printed in air ambient without vacuum processing and without toxic and explosive chemicals (e.g., hydrazine, H2Se and H2S), which can offer a promising strategy for future research and industrial investigation into costeffective photovoltaic systems.
Key words: Photovoltaic system; Photovoltaic effects; CuInSe2 solar cells
REFERENCES
[1] Mendonca, M. (2007). Feed-in Tariffs, Accelerating the Deployment of Renewable Energy. USA: Earthscan Ltd.
[2] Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K., & Br?unig, D. (1998). Efficient CuInS2 Thin-Film Solar Cells Prepared by a Sequential Process. Semicond. Sci. & Technol., 13(12),1456-1458.
[3] Zweigart, S., Sun, S. M., Bilger, G., & Shock, W. H. (1996). CuInSe2 Film Growth Using Precursors Deposited at Low Temperature. Sol. Energy Mater. & Sol. Cells, 41/42, 219-229.
[4] Repins, I., Contreras, M. A., Egaas, B., De Hart C., Scharf,
J., Perkins, C. L., To, B., Noufi, R. (2008). 19.9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Progress in Photovoltaics: Research and Applications, 16(3), 235-239.
[5] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi (1999). Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline ThinFilm Solar Cells. Progress in Photovoltaics: Research and Applications, 7(4), 311-316.
[6] Battaglia, C., S?derstr?m, K., Escarré, J., Haug, F.-J., Dominé, D., Cuony, P., Boccard, M., Bugnon, G., Denizot, C., Despeisse, M., Feltrin, A., & Ballif, C. (2010). Efficient Light Management Scheme for Thin Film Silicon Solar Cells via Transparent Random Nanostructures Fabricated by Nanoimprinting. Appl. Phys. Lett., 96(21), 213504.
[7] Aramoto, T., Kumazawa, S., Higuchi, H., Arita, T., Shibutani, S., Nishio, T., Nakajima, J., Tsuji, M., Hanafusa, A., Hibino, T., Omura, K., Ohyama, H., & Murozono, M.(1997). 16.0% Efficient Thin-Film CdS/CdTe Solar Cells. Jpn. J. Appl. Phys., 36, 6304-6305.
[8] Bach, U., Lupo, D., Comte, P., Moser, J. E., Weiss?rtel, F., Salbeck, J., Spreitzer, H., & Gr?tzel, M. (1998). Nature, 395, 583-585.
[9] Nakada, T., Kume, T., & Kunioka, A. (1998). SuperstrateType CuInSe2-Based Thin Film Solar Cells by a LowTemperature Process Using Sodium Compounds. Sol. Energy. Mater. Sol. Cells, 50(1-4), 97-103.
[10] Ramanathan, K., Teeter, G., Keane, J. C., & Noufi, R.(2005). Properties of High-Efficiency CuInGaSe2 Thin Film Solar Cells. Thin Solid Films, 480/481, 499-502.
[11] Deepa, K. G., Jayakrishinan, R., Vijayakumar, K. P., Kartha, C. S., & Ganesan, V. (2009). Sub-micrometer Thick CuInSe2 Films for Solar Cells Using Sequential Elemental Evaporation. Solar Energy, 83(7), 964-968.
[12] Song, H. K., Kim, S. G., Kim, H. J., Kim, S. K., Kang, K. W., Lee, J. C., & Yoon, K. H. (2003). Preparation of CuIn1?xGaxSe2 Thin Films by Sputtering and Selenization Process. Sol. Energy Mater. Sol. Cells, 75(1-2), 145-153.
[13] Wada, T., Matsuo, Y., Nomura, S., Nakamura, Y., Miyamura, A., Chiba, Y., Yamada, A., & Konagai, M.(2006). Fabrication of Cu(In,Ga)Se2 Thin Films by a Combination of Mechanochemical and Screen-Printing/ Sintering Processes. Phys. Stat. Sol. (a), 203(11), 2593-2597.
[14] Ahn, S. J., Kim, C. W., Yun, J. H., Gwak, J., Jeong, S., Ryu, B. H., & Yoon, K. H. (2010). CuInSe2 (CIS) Thin Film Solar Cells by Direct Coating and Selenization of Solution Precursors. J. Phys. Chem. C, 114(17), 8108-8113.
[15] Goossens, A., & Hofhuis, J. (2008). Spray-Deposited CuInS2 Solar Cells. Nanotechnology, 19(42), 424018.
[16] Lincot, D., Guillemoles, J. F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumont, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J. P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P. P., Benfarah, M., Mogensen, P., Kerrec, O. (2004). Chalcopyrite Thin Film Solar Cells by Electrodeposition. Solar Energy, 77(6), 725-737.
[17] Mitzi, D. B., Yuan, M., Liu, W., Kellock, A. J., Chey, S. J., Deline, V., & Schrott, A. G. (2008). A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device. Adv. Mater., 20(19), 3657-3662.
[18] Todorov, T. K., Reuter, K. B., & Mitzi, D. B. (2010). High-Efficiency Solar Cell with Earth-Abundant LiquidProcessed Absorber. Adv. Mater., 22(20), E156-E159.
[19] Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., Schmidt-Mende, L., Zakeeruddin, S. M., Kay, A., Nazeeruddin, M. K., & Gr?tzel, M. (2005). Control of Dark Current in Photoelectrochemical (TiO2/I--I3-)) and DyeSensitized Solar Cells. Chem. Commun., 34, 4351-4353.
[20] Knight, K. S. (1992). The Crystal Structures of CuInSe2 and CuInTe2. Mater. Res. Bull., 27, 161-167.
[21] Gobeaut, A., Laffont, L., Tarascon, J.-M., Parissi, L., Kerrec, O. (2009). Influence of Secondary Phases During Annealing on Re-crystallization of CuInSe2 Electrodeposited Films. Thin Solid Films, 517(15), 4436-4442.
[22] Nakada, T., Mizutani, M., Hagiwara, Y., & Kunioka, A.(2001). High-Efficiency Cu(In,Ga)Se2 Thin-Film Solar Cells with a CBD-ZnS Buffer Layer. Sol. Energy. Mater. Sol. Cells, 67(1-4), 255-260.
[23] Shafarman, W. N., & Zhu, J. (2000). Effect of Substrate Temperature and Depostion Profile on Evaporated Cu(InGa)Se2 Films and Devices. Thin Solid Films, 361/362, 473-477.
[24] Rahlfs, P. (1936). The Cubic High-Temperature Modifications of Sulfides, Selenides and Tellurides of Silver and of Univalent Copper. Z. Phys. Chem. B, 31, 157-194.
[25] Gates, B., Yin, Y., & Xia, Y. (2000). A Solution-Phase Approach to the SYNTHesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm. J. Am. Chem. Soc., 122, 12582-12583.
[26] Paulson, P. D., Haimbodi, M. W., Marsillac, S., Birkmire, R. W., & Shafarman, W. N. (2002). Cu(In1-xAlx)Se2 Thin Films and Solar Cells. J. Appl. Phys., 91(12), 10153.
[27] Agilan, S., Managalaraj, D., Narayandass, S. K., & Rao, G. M. (2005). Effect of Thickness and Substrate Temperature on Structure and Optical Band Gap of Hot Wall-Deposited CuInSe2 Polycrystalline Thin Films. Physica B: Condensed Matter, 365(1-4), 93-101.
CuInSe2 powders synthesized by ball milling were printed on In2S3/TiO2/FTO/glass substrates, resulting in superstrate solar cells. Although particle structure of CuInSe2 in the layer remained after heating at 600 °C under N2 gas, photovoltaic effects were observed; the open-circuit voltage and short-circuit current density were 0.45 V and 5.6 mA/cm2, respectively. The effects of annealing time on the structural, optical and photovoltaic properties of CuInSe2 were studied by scanning electron micrograph (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV-Vis reflectance absorption spectroscopy. The CuInSe2 solar cells were printed in air ambient without vacuum processing and without toxic and explosive chemicals (e.g., hydrazine, H2Se and H2S), which can offer a promising strategy for future research and industrial investigation into costeffective photovoltaic systems.
Key words: Photovoltaic system; Photovoltaic effects; CuInSe2 solar cells
REFERENCES
[1] Mendonca, M. (2007). Feed-in Tariffs, Accelerating the Deployment of Renewable Energy. USA: Earthscan Ltd.
[2] Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K., & Br?unig, D. (1998). Efficient CuInS2 Thin-Film Solar Cells Prepared by a Sequential Process. Semicond. Sci. & Technol., 13(12),1456-1458.
[3] Zweigart, S., Sun, S. M., Bilger, G., & Shock, W. H. (1996). CuInSe2 Film Growth Using Precursors Deposited at Low Temperature. Sol. Energy Mater. & Sol. Cells, 41/42, 219-229.
[4] Repins, I., Contreras, M. A., Egaas, B., De Hart C., Scharf,
J., Perkins, C. L., To, B., Noufi, R. (2008). 19.9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Progress in Photovoltaics: Research and Applications, 16(3), 235-239.
[5] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi (1999). Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline ThinFilm Solar Cells. Progress in Photovoltaics: Research and Applications, 7(4), 311-316.
[6] Battaglia, C., S?derstr?m, K., Escarré, J., Haug, F.-J., Dominé, D., Cuony, P., Boccard, M., Bugnon, G., Denizot, C., Despeisse, M., Feltrin, A., & Ballif, C. (2010). Efficient Light Management Scheme for Thin Film Silicon Solar Cells via Transparent Random Nanostructures Fabricated by Nanoimprinting. Appl. Phys. Lett., 96(21), 213504.
[7] Aramoto, T., Kumazawa, S., Higuchi, H., Arita, T., Shibutani, S., Nishio, T., Nakajima, J., Tsuji, M., Hanafusa, A., Hibino, T., Omura, K., Ohyama, H., & Murozono, M.(1997). 16.0% Efficient Thin-Film CdS/CdTe Solar Cells. Jpn. J. Appl. Phys., 36, 6304-6305.
[8] Bach, U., Lupo, D., Comte, P., Moser, J. E., Weiss?rtel, F., Salbeck, J., Spreitzer, H., & Gr?tzel, M. (1998). Nature, 395, 583-585.
[9] Nakada, T., Kume, T., & Kunioka, A. (1998). SuperstrateType CuInSe2-Based Thin Film Solar Cells by a LowTemperature Process Using Sodium Compounds. Sol. Energy. Mater. Sol. Cells, 50(1-4), 97-103.
[10] Ramanathan, K., Teeter, G., Keane, J. C., & Noufi, R.(2005). Properties of High-Efficiency CuInGaSe2 Thin Film Solar Cells. Thin Solid Films, 480/481, 499-502.
[11] Deepa, K. G., Jayakrishinan, R., Vijayakumar, K. P., Kartha, C. S., & Ganesan, V. (2009). Sub-micrometer Thick CuInSe2 Films for Solar Cells Using Sequential Elemental Evaporation. Solar Energy, 83(7), 964-968.
[12] Song, H. K., Kim, S. G., Kim, H. J., Kim, S. K., Kang, K. W., Lee, J. C., & Yoon, K. H. (2003). Preparation of CuIn1?xGaxSe2 Thin Films by Sputtering and Selenization Process. Sol. Energy Mater. Sol. Cells, 75(1-2), 145-153.
[13] Wada, T., Matsuo, Y., Nomura, S., Nakamura, Y., Miyamura, A., Chiba, Y., Yamada, A., & Konagai, M.(2006). Fabrication of Cu(In,Ga)Se2 Thin Films by a Combination of Mechanochemical and Screen-Printing/ Sintering Processes. Phys. Stat. Sol. (a), 203(11), 2593-2597.
[14] Ahn, S. J., Kim, C. W., Yun, J. H., Gwak, J., Jeong, S., Ryu, B. H., & Yoon, K. H. (2010). CuInSe2 (CIS) Thin Film Solar Cells by Direct Coating and Selenization of Solution Precursors. J. Phys. Chem. C, 114(17), 8108-8113.
[15] Goossens, A., & Hofhuis, J. (2008). Spray-Deposited CuInS2 Solar Cells. Nanotechnology, 19(42), 424018.
[16] Lincot, D., Guillemoles, J. F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumont, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J. P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P. P., Benfarah, M., Mogensen, P., Kerrec, O. (2004). Chalcopyrite Thin Film Solar Cells by Electrodeposition. Solar Energy, 77(6), 725-737.
[17] Mitzi, D. B., Yuan, M., Liu, W., Kellock, A. J., Chey, S. J., Deline, V., & Schrott, A. G. (2008). A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device. Adv. Mater., 20(19), 3657-3662.
[18] Todorov, T. K., Reuter, K. B., & Mitzi, D. B. (2010). High-Efficiency Solar Cell with Earth-Abundant LiquidProcessed Absorber. Adv. Mater., 22(20), E156-E159.
[19] Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., Schmidt-Mende, L., Zakeeruddin, S. M., Kay, A., Nazeeruddin, M. K., & Gr?tzel, M. (2005). Control of Dark Current in Photoelectrochemical (TiO2/I--I3-)) and DyeSensitized Solar Cells. Chem. Commun., 34, 4351-4353.
[20] Knight, K. S. (1992). The Crystal Structures of CuInSe2 and CuInTe2. Mater. Res. Bull., 27, 161-167.
[21] Gobeaut, A., Laffont, L., Tarascon, J.-M., Parissi, L., Kerrec, O. (2009). Influence of Secondary Phases During Annealing on Re-crystallization of CuInSe2 Electrodeposited Films. Thin Solid Films, 517(15), 4436-4442.
[22] Nakada, T., Mizutani, M., Hagiwara, Y., & Kunioka, A.(2001). High-Efficiency Cu(In,Ga)Se2 Thin-Film Solar Cells with a CBD-ZnS Buffer Layer. Sol. Energy. Mater. Sol. Cells, 67(1-4), 255-260.
[23] Shafarman, W. N., & Zhu, J. (2000). Effect of Substrate Temperature and Depostion Profile on Evaporated Cu(InGa)Se2 Films and Devices. Thin Solid Films, 361/362, 473-477.
[24] Rahlfs, P. (1936). The Cubic High-Temperature Modifications of Sulfides, Selenides and Tellurides of Silver and of Univalent Copper. Z. Phys. Chem. B, 31, 157-194.
[25] Gates, B., Yin, Y., & Xia, Y. (2000). A Solution-Phase Approach to the SYNTHesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm. J. Am. Chem. Soc., 122, 12582-12583.
[26] Paulson, P. D., Haimbodi, M. W., Marsillac, S., Birkmire, R. W., & Shafarman, W. N. (2002). Cu(In1-xAlx)Se2 Thin Films and Solar Cells. J. Appl. Phys., 91(12), 10153.
[27] Agilan, S., Managalaraj, D., Narayandass, S. K., & Rao, G. M. (2005). Effect of Thickness and Substrate Temperature on Structure and Optical Band Gap of Hot Wall-Deposited CuInSe2 Polycrystalline Thin Films. Physica B: Condensed Matter, 365(1-4), 93-101.