论文部分内容阅读
对淹没在噪声中的载波信号的频率估计可以通过对信号协相关矩阵求取特征向量,分离出信号子空间和噪声子空间,并可基于信号子空间找到与之线性相关,或者基于噪声子空间找到与之正交的载波信号。但要使这两个子空间的矢量函数在某个频率点上得到波峰,仅仅利用噪声子空间的算法,如MUSIC往往需要对一段较大频率范围的频域进行细致搜索,既耗费了大量的时间又会因为搜索步长的选取而造成对识别精度的影响。本文提出一种基于信号子空间的广义回归神经网络频率估计算法,利用广义回归神经网络其极强的非线型拟合和并行计算特性在信号子空间矢量与频