论文部分内容阅读
遗传算子是影响遗传算法优化效果的重要因素。针对目前遗传算法研究中忽视个体能动性,没有充分利用进化经验信息的不足,提出反映个体学习能力的学习算子。给出了以个体适应度的变化方向和速度为依据的学习算子设计方法及其计算过程。在此基础上与现有的改进遗传算子结合,提出一种新的改进遗传算法-自学习遗传算法,分析了自学习遗传算法与自适应遗传算法之间在原理上的区别。以一个弹道导弹射程优化问题为算例对算法进行了性能测试,结果表明,在采用相同的改进遗传算子的条件下,学习算子能够以较低的代价提高遗传算法的收敛速度,并获得更