论文部分内容阅读
Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemi-nation of information over the Intet, the traditional isolation and vaccination strategies can no longer achieve satisfactory results. A positive guidance technology for public opinion diffusion is urgently needed. First, based on the analysis of influence network controllability and public opinion diffusion, a positive guidance technology is proposed and a new model that supports extal control is established. Second, in combination with the influence network, a public opinion propa-gation influence network model is designed and a public opinion control point selection algorithm (POCDNSA) is proposed. Finally, An experiment verified that this algorithm can lead to users receiving the correct guidance quickly and accurately, reducing the impact of false public opinion information; the effect of CELF is no better than that of the POCDNSA algorithm. The main reason is that the former is completely based on the diffusion cascade information contained in the training data, but does not consider the specific situation of the network structure and the diffusion of public opinion information in the closed set. thus, the effectiveness and feasibility of the algorithm is proven. The findings of this article therefore provide useful insights for the implementation of public opinion control.