论文部分内容阅读
An extended Boussinesq equation that models weakly nonlinear and weakly dispersive waves on a uniform layer of water is studied in this paper. The results show that the equation is not Painlevé-integrable in general. Some particular exact travelling wave solutions are obtained by using a function expansion method. An approximate solitary wave solution with physical significance is obtained by using a perturbation method. We find that the extended Boussinesq equation with a depth parameter of 1/√2 is able to match the Laitone’s (1960) second order solitary wave solution of the Euler equations.