论文部分内容阅读
漫长的落地过程
从科幻电影中对于人工智能的无限遐想,到如今人工智能项目的陆续上马,已经过去了很长时间。不过作为一个基础学科,要想有真正意义上的人工智能产品落地,则需要更长的时间。
实际上,从2011年开始,微软、IBM、谷歌、Facebook和亚马逊等科技巨头们纷纷开始深度布局人工智能。然而,尽管近几年大家在深度学习算法、计算资源和大数据产业的成熟令人工智能技术实现了一些重要突破,但人工智能领域仍然没有一个成熟的消费级产品出现。尽管亚马逊的Echo和谷歌的Google Home受到了市场的欢迎和业内的好评,但真正体验过的人都知道,其人工智能水平依旧还有很大的提升空间。
BBC此前曾预测,到2020年,全球人工智能市场规模将达1 190亿元人民币,这一数字其实还不如2015年中国移动互联网的产业规模。不过,这并非是说人工智能前景黯淡,而是从侧面映证了这一特殊领域的发展进度不会太快—巨额投入之后短期内难有回报。或许也正是深谙此道,国内以BAT为代表的科技公司,在面对财务报表压力之时,选择了低调、保守地布局人工智能。
困难还不只是大数据,要实现人工智能还需要对现实中的场景进行抓取和捕捉,并通过算法将真实场景进行数据化,使之能够对被机器识别,达到对现实的感知。而获得数据化的现实场景数据后,还需要对数量庞大的样本数据进行对比训练,以实现对真实场景的识别,即机器学习。这些工作需要得到计算能力、算法和大数据的支撑,而这三项技术本身也还在完善中,还有很多难关有待攻克。
其次是应用场景。目前的人工智能产品,以前文我们提到的智能音箱和面向儿童的服务型机器人为主。软件和硬件的双重缺失,让创业者难以构建起公众感兴趣的人工智能应用场景。一方面,这是因为当下的人工智能水平还达不到更多的应用场景要求,另一方面承载人工智能的硬件产品也还存在很大提升空间。
要制造承载人工智能技术的消费级硬件产品,需要合适的材料,以及更复杂和精细的传感器。无论是智能机器人,还是智能汽车,都是全身遍布传感器的产品。现阶段,这一条硬件产业链也还并不成熟,难以带来产品形态的剧变。而除了硬件,在软件和服务方面的超级应用也因为当下人工智能技术的限制而未能培育出超级应用。最被人熟知的微软人工智能产品小冰,如今也还没有进入有实际作用的阶段。
最后是社会接受度。自人工智能技术开始被谈论之日起,无论是业内还是社会上,对此都有两种截然不同的观点—人工智能是否会威胁到人类的安全。而这样的争论至今没有定论,反而因为每一次人工智能技术取得突破而愈演愈烈。
很难说当人工智能有了自我意识之后,最终会成为贾维斯还是机械姬,机器人统治世界的桥段,已经在电影中上演了无数次。而就在今年,俄罗斯就曾出现过机器人私自从实验室逃跑的事情。不过另一方面,人们又希望机器人能够拥有人类一样的情感,软银和华硕等厂商就推出了各自的陪伴型机器人,让它们模拟人类的情感。
不仅是对于人类安全的担忧,人工智能还涉及到更难处理的伦理问题。在遇到紧急情况时,机器人的“自主”选择很可能就无法回避伦理问题。比如,在遇到危险要救人时,人工智能选择救谁舍谁就是个伦理问题。人类自己面临这样的问题时,尚且会引起争议,而人工智能的处理方式,显然更会让人工智能开发者更加棘手。
从科幻电影中对于人工智能的无限遐想,到如今人工智能项目的陆续上马,已经过去了很长时间。不过作为一个基础学科,要想有真正意义上的人工智能产品落地,则需要更长的时间。
实际上,从2011年开始,微软、IBM、谷歌、Facebook和亚马逊等科技巨头们纷纷开始深度布局人工智能。然而,尽管近几年大家在深度学习算法、计算资源和大数据产业的成熟令人工智能技术实现了一些重要突破,但人工智能领域仍然没有一个成熟的消费级产品出现。尽管亚马逊的Echo和谷歌的Google Home受到了市场的欢迎和业内的好评,但真正体验过的人都知道,其人工智能水平依旧还有很大的提升空间。
BBC此前曾预测,到2020年,全球人工智能市场规模将达1 190亿元人民币,这一数字其实还不如2015年中国移动互联网的产业规模。不过,这并非是说人工智能前景黯淡,而是从侧面映证了这一特殊领域的发展进度不会太快—巨额投入之后短期内难有回报。或许也正是深谙此道,国内以BAT为代表的科技公司,在面对财务报表压力之时,选择了低调、保守地布局人工智能。
困难还不只是大数据,要实现人工智能还需要对现实中的场景进行抓取和捕捉,并通过算法将真实场景进行数据化,使之能够对被机器识别,达到对现实的感知。而获得数据化的现实场景数据后,还需要对数量庞大的样本数据进行对比训练,以实现对真实场景的识别,即机器学习。这些工作需要得到计算能力、算法和大数据的支撑,而这三项技术本身也还在完善中,还有很多难关有待攻克。
其次是应用场景。目前的人工智能产品,以前文我们提到的智能音箱和面向儿童的服务型机器人为主。软件和硬件的双重缺失,让创业者难以构建起公众感兴趣的人工智能应用场景。一方面,这是因为当下的人工智能水平还达不到更多的应用场景要求,另一方面承载人工智能的硬件产品也还存在很大提升空间。
要制造承载人工智能技术的消费级硬件产品,需要合适的材料,以及更复杂和精细的传感器。无论是智能机器人,还是智能汽车,都是全身遍布传感器的产品。现阶段,这一条硬件产业链也还并不成熟,难以带来产品形态的剧变。而除了硬件,在软件和服务方面的超级应用也因为当下人工智能技术的限制而未能培育出超级应用。最被人熟知的微软人工智能产品小冰,如今也还没有进入有实际作用的阶段。
最后是社会接受度。自人工智能技术开始被谈论之日起,无论是业内还是社会上,对此都有两种截然不同的观点—人工智能是否会威胁到人类的安全。而这样的争论至今没有定论,反而因为每一次人工智能技术取得突破而愈演愈烈。
很难说当人工智能有了自我意识之后,最终会成为贾维斯还是机械姬,机器人统治世界的桥段,已经在电影中上演了无数次。而就在今年,俄罗斯就曾出现过机器人私自从实验室逃跑的事情。不过另一方面,人们又希望机器人能够拥有人类一样的情感,软银和华硕等厂商就推出了各自的陪伴型机器人,让它们模拟人类的情感。
不仅是对于人类安全的担忧,人工智能还涉及到更难处理的伦理问题。在遇到紧急情况时,机器人的“自主”选择很可能就无法回避伦理问题。比如,在遇到危险要救人时,人工智能选择救谁舍谁就是个伦理问题。人类自己面临这样的问题时,尚且会引起争议,而人工智能的处理方式,显然更会让人工智能开发者更加棘手。