【摘 要】
:
Visual localization is a crucial component in the application of mobile robot and autonomous driving. Image retrieval is an efficient and effective technique in image-based localization methods. Due to the drastic variability of environmental conditions,
【机 构】
:
Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China;Department of Automatio
论文部分内容阅读
Visual localization is a crucial component in the application of mobile robot and autonomous driving. Image retrieval is an efficient and effective technique in image-based localization methods. Due to the drastic variability of environmental conditions, e.g., illumination changes, retrieval-based visual localization is severely affected and becomes a challenging problem. In this work, a general architecture is first formulated probabilistically to extract domain-invariant features through multi-domain image translation. Then, a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy. We also propose a new adaptive triplet loss to boost the contrastive learning of the embedding in a self-supervised manner. The final coarse-to-fine image retrieval pipeline is implemented as the sequential combination of models with and without Grad-SAM loss. Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMU-Seasons dataset. The strong generalization ability of our approach is verified with the RobotCar dataset using models pre-trained on urban parts of the CMU-Seasons dataset. Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision, especially under challenging environments with illumination variance, vegetation, and night-time images. Moreover, real-site experiments have been conducted to validate the efficiency and effectiveness of the coarse-to-fine strategy for localization.
其他文献
Sliding mode control (SMC) has been studied since the 1950s and widely used in practical applications due to its insensitivity to matched disturbances. The aim of this paper is to present a review of SMC describing the key developments and examining the n
In this paper, we review and analyze intrusion detection systems for Agriculture 4.0 cyber security. Specifically, we present cyber security threats and evaluation metrics used in the performance evaluation of an intrusion detection system for Agriculture
This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space. The vehicle\'s model is established on the matrix Lie group SE(3), which describes the configuration of rigid bodies globally and uniquely. W
Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning (MP) problems, in which rapidly-exploring random tree (RRT) and the faster bidirectional RRT (named RRT-Connect) algorithms have achieved good results in m
This paper presents learning-enabled barrier-certified safe controllers for systems that operate in a shared environment for which multiple systems with uncertain dynamics and behaviors interact. That is, safety constraints are imposed by not only the ego
This paper shows that the aerodynamic effects can be compensated in a quadrotor system by means of a control allocation approach using neural networks. Thus, the system performance can be improved by replacing the classic allocation matrix, without using
Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system
In this paper, a data-driven conflict-aware safe reinforcement learning (CAS-RL) algorithm is presented for control of autonomous systems. Existing safe RL results with pre-defined performance functions and safe sets can only provide safety and performanc
Satellite swarm coordinated flight (SSCF) technology has promising applications, but its complex nature poses significant challenges for control implementation. In response, this paper proposes an easily solvable adaptive control scheme to achieve high-pe
A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets (PNs). In this paper, we propose an algorithm for the enumeration of minimal siph