Assessing artificial neural networks coupled with wavelet analysis for multi-layer soil moisture dyn

来源 :Sciences in Cold and Arid Regions | 被引量 : 0次 | 上传用户:sunshixi2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Soil moisture simulation and prediction in semi-arid regions are important for agricultural production, soil conservation and climate change. However, considerable heterogeneity in the spatial distribution of soil moisture, and poor ability of distributed hydrological models to estimate it, severely impact the use of soil moisture models in research and practical applications. In this study, a newly-developed technique of coupled(WA-ANN) wavelet analysis(WA) and artificial neural network(ANN) was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains, Gansu Province, China. Datasets included seven meteorological factors: air and land surface temperatures, relative humidity, global radiation, atmospheric pressure, wind speed, precipitation, and soil water content at 20, 40, 60, 80, 120 and 160 cm. To investigate the effectiveness of WA-ANN, ANN was applied by itself to conduct a comparison. Three main findings of this study were:(1) ANN and WA-ANN provided a statistically reliable and robust prediction of soil moisture in both the root zone and deepest soil layer studied(NSE >0.85, NSE means Nash-Sutcliffe Efficiency coefficient);(2) when input meteorological factors were transformed using maximum signal to noise ratio(SNR) and one-dimensional auto de-noising algorithm(heursure) in WA, the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth;(3) the results of multi-layer soil moisture prediction indicated that there may be different sources of water at different soil layers, and this can be used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site. We conclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimum distortion of the raw-time series; the new method used here is applicable to soil sciences and management applications. Soil moisture simulation and prediction in semi-arid regions are important for agricultural production, soil conservation and climate change. However, considerable heterogeneity in the spatial distribution of soil moisture, and poor ability of distributed hydrological models to estimate it, severely impact the use of soil moisture models in research and practical applications. In this study, a newly-developed technique of coupled (WA-ANN) wavelet analysis (WA) and artificial neural network (ANN) was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains, Gansu Province, China. Datasets included seven meteorological factors: air and land surface temperatures, relative humidity, global radiation, atmospheric pressure, wind speed, precipitation, and soil water content at 20, 40, 60, 80, 120 and 160 cm. To investigate the effectiveness of WA-ANN, ANN was applied by itself to conduct a comparison. Three main findings of this study were: (1) ANN and WA-ANN provided a substantial and robust prediction of soil moisture in both the root zone and deepest soil layer studied (NSE> 0.85, NSE means Nash-Sutcliffe Efficiency coefficient); (2) when input meteorological factors were transformed using maximum signal to noise ratio (SNR) and one-dimensional auto de-noising algorithm (heursure) in WA, the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth; (3) the results of multi-layer soil moisture prediction that there may be different sources of water at different soil layers, and this can be used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site. We conclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimum distortion of the raw-time series; the new method used here is applicable to soil sciences and management applications.
其他文献
本文利用非标准分析理论,在扩大模型和饱和模型下,系统地研究了拓扑空间中的若干理论知识,给出相关概念的非标准特征,sober空间的非标准特征,分离性,网,万有网等。   第—部分,我
本文对(α,β)-度量的S-曲率和旗曲率进行了研究.首先,通过对Busemann-Hausdorff体积形式的计算,给出了S-曲率的计算公式.从而得到了(α,β)-度量的S-曲率为0的一个非平凡条件.并且
本文研究了一类新的弱广义混合变分不等式及渐进非扩张映射对、相对非扩张映射对的公共不动点的迭代逼近问题。文章简述了变分不等式理论及非扩张映射的不动点迭代逼近问题的
本文主要研究T上哈密顿系统的周期解,文章由两部分构成,在第一部分中我们对Mores理论,临界模,辛道路的指标及其迭代,有限能量同调等内容进行了归纳与总结,言简意赅地介绍了其核心内
摘 要 石家庄是河北省政治、经济、文化中心。市区面积455.8平方千米,市区人口231.5万。近年来石家庄市的环境保护工作取得显著成效,生态环境明显改善,但仍存在着一些不可忽视的问题。  关键词 生态环境 问题 对策  中图分类号:C922文献标识码:A    一、石家庄城市人口生态环境存在的问题    (一)大气污染。   石家庄市以纺织、制药、化工、建材、运输为主导的新型综合工业城市。由于石家
摘 要 匹配度是反映实际物流组织方案与物流服务需求之间的匹配程度的重要参数。本文建立了基于匹配度的小区物流网络能力分配模型,并通过具体的算例对其进行了分析和求解。  关键词 匹配度 能力分配  中图分类号:F259.23文献标识码:A    一、引言     物流网络能力的设计与优化对物流运营有很大影响,通过合理安排网络的运输、仓储和其他能力,有助于降低网络的运营成本,提高物体流通的效率,达到提高
摘 要 本文阐述了影响物流服务质量的因素,在对物流企业的客户细分的基础上,提出了对物流服务质量管理的一些建议与方法。  关键词 物流服务 物流服务质量管理  中图分类号:F511.41文献标识码:A    一、引言    随着物流产业的迅猛发展,越来越多的物流企业加入到物流市场的竞争中来。随着竞争的加剧,如何在激烈的竞争中获得胜利,以成为物流企业面临的首要问题。通过富有成效的工作,保持或不断提高顾
立足于媒介生态视角,分析电视读书栏目在我国的生态演变历程与所面临的现实困境,在此基础上解读困境产生的文化、媒介、社会等原因,并尝试提出解决的建议与对策,以期促进电视
本文对常p-Laplace系统周期解的存在性进行了研究。文章利用临界点理论中的极小极大原理研究了以上二阶非自治哈密尔顿系统周期解,扩展了解的存在条件;利用相应空间的一致凸性,
本文依据张伊娜教授对阅读教学提出的基本模式,对阅读前(Pre-reading)、阅读中(While-reading)、阅读后(Post-reading)的有效活动设计进行阐述,力求通过阅读教学中三个阶段的