论文部分内容阅读
文章基于机器视觉,通过图像获取系统得到大豆的表面颜色特征,应用SAS对大豆表面颜色特征进行LOGISTIC回归后,应用BP神经网络对大豆进行标准粒与细菌斑点病粒的分类。经过网络训练后,选用收敛效果好的网络对数据进行仿真预测,共计160粒,其中标准大豆80粒,细菌斑点病80粒。得到的测试识别率为:标准大豆96.3%、大豆菌斑粒98.8%。本研究为大豆菌斑粒的在线识别提供了一定的依据,有利于实现大豆的在线缺陷粒检测。