论文部分内容阅读
针对主冷却泵长期工作在高温、高压及高辐射的恶劣工作环境中,其并发故障存在较高概率并难以诊断,提出一种DSmT决策级融合算法,构建了泵主轴转子不平衡、泵主轴转子不对中及主轴损坏的DSmT辨识理论框架,由实测采集数据综合确定DSmT故障特征信度赋值,利用DSmT对多个独立证据源进行决策判断得出主冷却剂泵故障及并发故障的诊断结果.实验结果表明该方法能有效识别主冷却剂泵并发故障特征,具有一定的理论基础及工程应用价值.