论文部分内容阅读
人脸检测是生物特征识别技术中一个关键技术。针对人脸检测中正负样本类别不平衡的特性,提出基于BalanceCascade不平衡分类算法的人脸检测系统。系统通过控制分类器的误报率使得每层正负样本的规模相当,然后加权所有弱分类器构建最终的强分类器,消除训练正负样本不平衡的特点。在ORL人脸数据集上进行实验,采用F-measure和AUC作为评判标准,相比于传统的AdaBoost和UnderSamping不平衡分类算法,实验结果表明BalanceCascade算法优于传统的不平衡分类算法。