论文部分内容阅读
During the crystal grown by VBM, the solid/liquid interface configurations greatly influence the quality of as-grown crystals. In this paper, finite element method (FEM) was used to simulate the growth process of CdZnTe crystal. The effects of different crucible moving rates and temperature gradient of adiabatic zone on crystal growth rate and solid-liquid interface onfiguration were studied as well. Simulation results show that when crucible moves at the rate of about 1 mm/h, which is nearly equal to crystal growth rate, nearly flat solid/liquid interface and little variation of axial temperature gradient near it can be attained, which are well consistent with the results of experiments. CdZnTe crystal with low dislocation density can be btained by employing appropriate crucible moving rate during the crystal growth process.