论文部分内容阅读
近年来,为保护公众隐私,互联网上的很多流量被加密传输,传统的基于深度包检测、机器学习的方法在面对加密流量时,准确率大幅下降。随着深度学习自动学习特征的应用,基于深度学习算法的加密流量识别和分类技术得到了快速发展,本文对这些研究进行综述。首先,简要介绍基于深度学习的加密流量检测应用场景。然后,从数据集的使用和构建、检测模型和检测性能3个方面对已有工作进行总结和评价,其中检测技术重点论述数据的预处理、不平衡数据集的处理、神经网络构建、实时检测等方法。最后,讨论当前研究中出现的问题和未来发展方向和前景,为该领域