论文部分内容阅读
为了解决目标跟踪中常见的尺度变换、相似目标、背景嘈杂等问题,提出了自适应尺度的上下文感知相关滤波跟踪算法。针对以上问题,在相关滤波跟踪算法的基础上将目标周围的上下文信息作为硬负样本引入分类器中学习,强化分类器的判别能力;通过尺度池在线学习判别式尺度滤波器,在目标位置估计最佳目标尺寸;通过图像帧差均值来评估目标状态并自适应调整模型更新的学习率。实验结果表明提出的算法在快速运动、目标形变等场景下鲁棒性较好。