论文部分内容阅读
提出了一类基于贴近度理论的模糊ART神经网络模型 ,简称为CBFART(ClosenessBasedFuzzyART)模型。将模糊数学中的贴近度 (Closeness)和择近原则 (ClosestPrinciple)概念与自适应共振理论 (ART)相结合 ,形成了一种新的网络模型。该模型的学习以匹配—委托循环为特点 ,网络分类遵循择近原则。补码编码、匹配—委托和快速委托—慢速重编码方案相结合 ,保证了网络学习的收敛性和稳定性 ,并可以做到一次性学习 ,提高了学习速度。文中对高维样本进行分类仿真 ,给