论文部分内容阅读
8.3 重正化群:构形观点 任何宏观物理系统的行为都反映它的微观组元会采取的构形(排列).这是统计物理学和它的关键方程(8.1)和(8.2)的中心论题.有一个显然的推论:统汁物理学的手段和正确性有(或常常有)一种明白的构形意义.按这种精神,我们现在开始从构形的角度(这里是图形而不是方程形成自然的言语)来介绍重正化群的关键性概念和内容. 8.3.1 粗粒化 我们问题的解,像问题本身一样,是一个长度标度问题.我们已经遇到了3种重要的标度,现在我们必须介绍第4种.与表征系统本身的其他3种长度大不相同,这第4种长度L
8.3 Renormalization Clusters: Constructive Perspectives The behavior of any macroscopic physical system reflects the configuration (permutation) that its microscopic components take. This is the center of statistical physics and its key equations (8.1) and (8.2) There is a clear corollary: There is (or is often) a clear conception of the meaning and correctness of the method and correctness of a system of juices, and in this spirit we now begin with the conformational point of view Forming natural words) to introduce the key concepts and content of a renormalization group 8.3.1 Graining The solution to our problem, like the problem itself, is a problem of length scale and we have encountered three important criteria We now have to introduce the fourth species, which is very different from the other three species of the characterization system itself, and the fourth species of length L