论文部分内容阅读
证明存在递归可枚举图灵度a和c使得c(≤)a,并且对每个递归可枚举图灵度b≤Ta, b≠c, 其中a是R/M中的一个元素,R/M是递归可枚举图灵度集R模可盖图灵度集M的商.“,”It is proved that there are r.e. degrees a and c such that [c]<[a] and [b]≠[c] for any r.e. degree b≤T a, where [a] is an element of R/M, the quotient of the recursively enumerable degrees R modulo the cappable degrees M.