论文部分内容阅读
近年来,基于深度学习的红外空中目标跟踪算法不断涌现,如何对其性能进行评估已经成为一个亟待解决的问题。利用单帧图像混淆度和遮隐度对图像复杂度进行计算,并结合目标运动复杂度,建立了融合图像复杂度和运动复杂度的序列复杂度计算模型。构建了包含420个序列的红外序列样本库,利用序列复杂度对样本库测试结果进行加权评分,提出了一种新的红外空中目标跟踪算法性能评估方法。实验结果表明,所提出的评估方法能全面评估算法在不同态势下的性能。