【摘 要】
:
Fishes interact with the fluid environment using various surfaces.These multiple control surfaces work in combination to produce the thrust and the balance torques in a steady swimming,to maneuver and to position themselves accurately even in turbulent fl
【机 构】
:
Department of Mechatronics Engineering, Taizhou Vocational and Technical College, Taizhou 318000, Ch
论文部分内容阅读
Fishes interact with the fluid environment using various surfaces.These multiple control surfaces work in combination to produce the thrust and the balance torques in a steady swimming,to maneuver and to position themselves accurately even in turbulent flows.These motivate us to embark on a research program designed to develop an agile biologically inspired robotic fish based on the performance of multiple fins.To accomplish this goal,a mechanical ray-like fin actuated by the shape memory alloy (SMA) is developed,which can realize the oscillating motion,the undulating motion or even the complex three dimensional motion.The basic unit is the two opposite side SMA-driven plate,namely the fin ray.As a result,a lightweight bio-inspired fin is constructed by placing radially multiple SMA fin rays.A biologically inspired underwater vehicle (BIUV) is later built using the above multiple lightweight bio-inspired fins.Two common arrangement styles of multiple fins on the BIUV are considered here:one is the posterior fin (for the oscillating motion) that is parallel to the anterior fins (for the undulating motion),another one is the posterior fin that perpendicular to the anterior fins.The kinematic modeling,the deformation modeling and the detecting of the SMA fin are made.The thrust generation is also established.Finally,an experiment is conducted to test the performance of the proposed two arrangement styles,including the comparison of the averaged propulsion velocity and the averaged thrust under certain kinematic parameters.Meanwhile,the influence of the frequency and the amplitude of the SMA fin ray on the propulsion performance is also investigated.
其他文献
A CFD solver naoe-FOAM-SJTU (The abbreviation naoe stands for naval architecture and ocean engineering) is developed based on the open source platform OpenFOAM with the purpose of simulating various marine hydrodynamic problems.In the present paper,self-d
As a fundamental fluid-structure interaction (FSI) phenomenon, vortex-induced vibrations (VIVs) of circular cylinders have been the center of the FSI research in the past several decades. Apart from its scientific significance in rich physics, VIVs are pa
The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipation in the smallest eddies is the main
This paper applies numerical methods to investigate the non-spherical bubble collapse near a rigid boundary. A three-dimensional model, with the mass conservation equation reformulated for considering the compressibility effect, is built to deal with the
Tadpole swimming, including a solitary tadpole swimming and schooling side-by-side in an in-phase mode, is investigated numerically in the present paper. The three-dimensional Navier-Stokes equations for the unsteady incompressible viscous flow are solved
The Liutex core line method, first combined with the snapshot proper orthogonal decomposition (POD), is utilized in a supersonic micro-vortex generator (MVG) wake flow at Ma=2.5 and Reθ=5760 to reveal the physical significance of each POD mode of the flow
The flow structure and geomorphology of rivers are significantly affected by vegetation patterns. In the present study, the effect of vegetation in the form of discontinuous and vertically double layered patches particularly on the resulting flow turbulen
Helmholtz velocity decomposition and Cauchy-Stokes tensor decomposition have been widely accepted as the foundation of fluid kinematics for a long time. However, there are some problems with these decompositions which cannot be ignored. Firstly, Cauchy-St
In the present study,a multi-objective optimization of a flow straightener in a firefighting water cannon is performed by using the surrogate modeling and a hybrid multi-objective genetic algorithm to increase the jet range of the water cannon.Based on an
In this study,an efficient numerical method for predicting the wake interference of multiple turbines is presented.The actuator line (AL) model instead of the geometry-resolved method is adopted to represent the rotor.The large-eddy simulation (LES) is pe