论文部分内容阅读
文中提出了一种在手语动作中提取关键动作的算法。在连续复杂的手语动作中,关键动作数量少且状态相对稳定,因此利用关键动作构造手语的数据模型,将会减少不稳定因素,提高准确率。因此文中提出了一种自适应的分类算法,利用关键动作之间时间的先后关系,以及动作上的不相关性,逐步提取关键动作。实验证明,该算法不仅可以面向非特定人群,而且无论是对单独的手语词汇,还是连续的手语语句,均可以提取到全部的关键动作。关键动作可以看作是手语的基元,因此关键动作的提取对于构造新的手语数据模型以及识别手语都具有重要意义。