论文部分内容阅读
Many properties of nanocrystalline materials are associated with interface effects. Based on their microstructural features, the influence of interfaces on the effective elastic property of nanocrystalline materials is investigated. First, the Mori-Tanaka method is employed to determine the overall effective elastic moduli by considering a nanocrystalline material as a binary composite solid consisting of a crystal or inclusion phase with regular lattice connected by an amorphous-like interface or matrix phase. The effects of strain gradients are then examined on the effective elastic property by using the strain gradient theory to analyze a representative unit cell. Two interface mechanisms are elucidated that influence the effective stiffness and other mechanical properties of materials. One is the softening effect due to the distorted atomic structures and the increased atomic spacings in interface regions, and the other is the baffling effect due to the existence of boundary layers near interfaces.