论文部分内容阅读
如何从含噪振动信号中准确提取微弱周期性故障特征是辨识滚动轴承局部故障的关键。针对此问题,提出一种基于二次聚类分割与Teager能量谱的滚动轴承微弱故障特征提取方法。首先通过傅里叶变换得到故障信号的频谱并利用模糊C均值算法对其进行聚类分割;然后对每个频段进行傅里叶逆变换并计算不同频段时域信号的峭度,选取峭度最大频段对应的时域信号作为滤波信号,对该信号进行第二次聚类分割及傅里叶逆变换,选取最大峭度对应的频段作为通带过滤信号,进一步消除噪声和自然周期性成分的影响;最后采用Teager能量算子对得到的时域故障信号