论文部分内容阅读
讨论了非线性波动方程((e)2t-Δx)uε+F((e)tuε|P-1(e)tuε)=0,(t,x)∈(0,∞)×R3,uε|t=0=εU0=εU0r,(r-r0)/(ε),(e)tuε|t=0=U1r,(r-r0)/(ε)在次临界情形下(即1<p<2时)所描述的球形脉冲波的解的误差分析,其中在F上是一致Lipschitiz的.在小初值情形下讨论了主轮廓(leading profiles)的局部存在性及解在焦点附近的渐近性态.