基于时空信息和非负成分表示的动作识别

来源 :东南大学学报:自然科学版 | 被引量 : 0次 | 上传用户:charlehc1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为充分利用时空分布信息及视觉单词间的关联信息,提出了一种新的时空非负成分表示方法(ST-NCR)用于动作识别.首先,基于视觉词袋(Bo VW)表示,利用混合高斯模型对每个视觉单词所包含的局部特征的时空位置分布进行建模,计算时空Fisher向量(STFV)来描述特征位置的时空分布;然后,利用非负矩阵分解从Bo VW表示中学习动作基元并对动作视频进行编码.为有效融合时空信息,采用基于图正则化的非负矩阵分解,并且将STFV作为图正则化项的一部分.在3个公共数据库上对该方法进行了测试,结果表明,相比于Bo VW表
其他文献