论文部分内容阅读
To fight against malicious codes of P2P networks, it is necessary to study the malicious code propagation model of P2P networks in depth. The epidemic of malicious code threatening P2P systems can be divided into the active and passive propagation models and a new passive propagation model of malicious code is proposed, which differentiates peers into 4 kinds of state and fits better for actual P2P networks. From the propagation model of malicious code, it is easy to find that quickly making peers get their patched and upgraded anti-virus system is the key way of immunization and damage control. To distribute patches and immune modules efficiently, a new exponential tree plus (ET+) and vaccine distribution algorithm based on ET+ are also proposed. The performance analysis and test results show that the vaccine distribution algorithm based on ET+ is robust, efficient and much more suitable for P2P networks.
To fight against malicious codes of P2P networks, it is necessary to study the malicious code propagation model of P2P networks in depth. The epidemic of malicious code threatening P2P systems can be divided into the active and passive propagation models and a new passive propagation model of malicious code is proposed, which differentiates peers into 4 kinds of state and fits better for actual P2P networks. From the propagation model of malicious code, it is easy to find that quickly making peers get their patched and upgraded anti-virus system is the key way of immunization and damage control. To distribute patches and immune modules efficiently, a new exponential tree plus (ET +) and vaccine distribution algorithm based on ET + are also proposed. The performance analysis and test results show that the vaccine distribution algorithm based on ET + is robust, efficient and much more suitable for P2P networks.