论文部分内容阅读
图像分割在医学超声图像的定量、定性分析中均扮演着十分重要的作用, 并直接影响到后续的分析、处理工作。针对医学超声图像对比度低和噪声强的特点, 提出了一种将超像素和模糊聚类技术相结合的图像分割方法。该方法利用简单线性迭代聚类算法产生多个超像素子区域, 通过比较各个子区域间特征向量的相似性, 利用模糊C均值(FCM)聚类技术对这些过分割区域进行合并, 实现超声图像目标区域的有效分割。和传统的基于单像素的FCM聚类算法相比, 该方法具有较强的鲁棒性, 有效提高了目标区域的分割精度和分割效率, 取得了较好的分割效果。