论文部分内容阅读
为有效提高西北旱区参考作物蒸散量(Reference crop evapotranspiration,ET0)预报精度,在西北旱区选择5个代表性气象站点,构建10种基于思维进化算法(Mind evolutionary algorithm,MEA)优化的误差反向传波神经网络(Back propagation neural network,BPNN)ET0预报模型,并将其与Hargreaves-Samani模型、Irmak模型和48-PM模型等3种在西北旱区ET0计算精度较高的模型进行比较。结果表明:在不同输