论文部分内容阅读
Based on 1961–2005 observed winter precipitation data in Northeast China, the temporal and spatial variations of snow concentration degree (SCD) and snow concentration period (SCP), together with the circulation characteristics when there is a higher SCD, are computed and analyzed. Results show that SCD in Northeast China presents a yearly rising tendency and SCP decreases obviously. In terms of decadal variation, there is a 12-year periodic variation in PCP, and since the mid-1970s there has been an 8-year short periodic variation. As to spatial variation, SCD in winter of Northeast China has increased gradually from the eastern part to the western, and the minimum value of SCD occurs in the east of Jilin Province, while the high value center is observed in the central part of the province. For the whole Northeast China, the variation tendencies are consistent in the eastern and central parts, where SCD presents a rising tendency and SCP shows a decreasing tendency. SCD in the southwestern and northern parts has a slight rising tendency, with SCD in the southwestern part having the slightest increasing tendency, and SCP in the northern part showing the slightest decreasing tendency. When a high SCD value is observed, the whole region is controlled by the East Asian deep trough at 500 hPa, and the trough becomes deeper in the western part, while a high pressure, which is easily formed and intensified in the eastern part, makes the East Asian deep trough move eastward slowly. Upper-level jet stream and low-level jet stream co-exist, and the former is stronger and takes more of a southwestward position than the latter. The high value zone of water vapor transport over the Pacific is intensified obviously, and the extent also increases. Northeast China is influenced by the water vapor transported to the northwest along the north of the high value center.