论文部分内容阅读
为精确建立分割粒径与旋风分离器结构参数和操作参数之间的复杂映射关系,发展了基于数据驱动的BP神经网络(BPNN)的分割粒径模型。使用全局量纲分析,提出环形空间雷诺数、表征旋风分离器本体尺寸影响的量纲为1数和排气芯管插入深度尺寸比作为网络输入参数,表征空气动力等效分割粒径大小的量纲为1尺寸作为网络输出参数,分别确定了训练算法和隐含层神经元个数对BPNN分割粒径模型预测精度的影响。结果表明:贝叶斯正则化算法优于L-M算法和拟牛顿算法,并在隐含层神经元个数为7时达到最优预测性能。与理论模型、半经验模型和多元回归