Two-photon dual-channel fluorogenic probe for in situ imaging the mitochondrial H2S/viscosity in the

来源 :中国化学快报(英文版) | 被引量 : 0次 | 上传用户:nbywfcom
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
H2S is an essential gas signal molecule in cells, and viscosity is a key internal environmental parameter. Recent studies have shown that H2S acts as a cytoarchitecture agent and gas transmitter in many tissues, e.g., as a regulator of neuroendocrine in the brain for mediating vascular tone in blood vessels. Mitochondrial viscosity is an important parameter for judging whether mitochondrial function is normal. It has been reported that oxidative stress and mitochondrial dysfunction are connected with Parkinson’s disease (PD), and the protective role of H2S in PD models has been extensively demonstrated. Herein, Mito-HS, a new two-photon fluorescent probe was demonstrated to detect cross-talk between the two channels of mitochondrial viscosity and H2S content. Moreover, this probe could detect the relative amount of and changes in mitochondrial H2S in situ due to the reduced mitochondrial targeting ability after reaction with H2S. The results show that H2S in mitochondria is inversely related to viscosity. The PD model has a lower H2S in mitochondria and a higher mitochondrial viscosity than did the normal. This result is important for our deep understanding of PD and its causes.
其他文献
The quantitative calculation of the volume of large earthquake-triggered landslides and related dammed lake sediments is of great significance in the study of s