论文部分内容阅读
结合粗糙集理论,利用像素邻域的空间信息,对图像色彩的分布进行了量化表示,并据此提出一种基于量化粗糙信息的改进图像分割方法,该方法使用局部量化粗糙度和待定算子来更新FCM算法中的隶属度函数,实现图像的初步分割,并针对初步分割后的小区域和相似区域,进行色彩区域的合并操作,来对分割结果进行优化。实验结果表明,相对于传统的模糊C-均值(FCM)聚类分割算法,提出的方法降低了时间复杂度,且具有良好的分割效果。