论文部分内容阅读
The temporal and spatial distribution of microfracturing activity in two kinds of granite under triaxial compression has been studied by using a new acoustic emission system. For Inada granite, there is no clear clustering of acoustic emission events in time and space, thus it is difficult to exactly deduce the time and position of the major fracturing. While for Mayet granite,acoustic emission events are clustered in time and space, so the time and position of the major fracturing can be exactly predicted according to microfracturing process. Such a difference may result from the difference in deformation mode caused by different rock structures.
The temporal and spatial distribution of microfracturing activity in two kinds of granite under triaxial compression has been studied by using a new acoustic emission system. For Inada granite, there is no clear clustering of acoustic emission events in time and space, thus it is difficult to exactly deduce the time and position of the major fracturing. While for Mayet granite, acoustic emission events are clustered in time and space, so the time and position of the major fracturing can be exactly calculated according to microfracturing process. Such a difference may result from the difference in deformation mode caused by different rock structures.