论文部分内容阅读
一、选择题1.一条直线和这条直线外的三个点,能够确定的平面的个数是( ).(A)一个(B)三个(C)四个(D)一个或三个或四个2.在图(1)中直线a与直线b平行的位置关系,只能是( ).3.a、b为平面M外的两直线,在a∥平面M的前提下,a∥b是b∥平面M的( ).(A)充分但非必要条件(B)必要但非充分条件(C)充分且必要条件(D)既非充分也非必要条件4.直线AB与直二面角α-a-β的两个面分别相交于A、B两点,且A、B都不在棱a上,设直线AB与平面α和平面β所成的角分别为θ和(?),则θ+(?)的取值范围是( ).(A)0°<θ+(?)<90°(B)0°<θ十(?)<180°(C)θ+(?)>90°(D)θ+(?)= 90°
First, multiple-choice questions 1. A straight line and three points outside this line, the number of planes that can be determined is (). (A) One (B) Three (C) Four (D) One or Three Or four 2. In Figure (1), the positional relationship between the straight line a and the straight line b can only be () .3.a, b is two straight lines outside the plane M, under the premise of a plane M, a ∥b is b∥plane M (). (A) sufficient but not necessary condition (B) necessary but not sufficient condition (C) sufficient and necessary condition (D) is neither sufficient nor not necessary condition 4. straight AB and straight The two faces of the dihedral angle α-a-β intersect at two points A and B respectively, and A and B are not on the edge a. Let the angle formed by the line AB and the plane α and the plane β be θ and (? ), then θ + (?) The range of values is (). (A) 0 ° <θ + (?) <90 ° (B) 0 ° <θ ten (?) <180 ° (C) θ + ( ?)>90°(D)θ+(?)= 90°