论文部分内容阅读
随机森林算法是一种高度灵活且易于使用的机器学习算法,目前在遥感影像分类中应用广泛。为了验证其在城市土地覆盖分类中的效果,本文对河南省洛阳市局部城区进行了土地覆盖分类实验,将Landsat 8(OLI)遥感影像的光谱波段、光谱指数和纹理特征相结合,构成多种特征组合进行随机森林算法分类比较,选择分类效果最佳方案,并与支持向量机方法进行比较。后利用随机森林算法对该组合特征变量高维数据进行降维处理,得到优化特征方案。实验结果表明:采用多源特征组合的随机森林算法的土地利用分类效果最佳,总体精度为90.54%,