论文部分内容阅读
时间序列中的异常模式能够提供大量有意义的信息,由于时间序列数据量大、含噪音、维度高,直接在原始时间序列数据中进行异常模式挖掘要花费大量的时间和空间代价.常用的时间序列分段线性表示法,易受阈值和分段数目的影响.对此,根据实际工程监测中时间序列的特征,将不限定分段数目与子序列长度的方法相结合,基于斜率及最大时间跨度,将原始时间序列分割成长度不同的子序列,提取子序列的极值差、斜率、均值等特征值,并映射到三维特征空间,在该特征空间中计算正常模式间的距离,以正常模式间距离为标准,求出各子序列的异常因子,检测异常模式