论文部分内容阅读
Noble metal-semiconductor hybrids have been employed as fundamental structures in modern technologies. In these hybrids, their cooperative multiple functions attract much attention in recent years because of the interplay of nanoparticles and nanostructures. In this review, we summarize the interplay of nanoparticles and nanostructures in specific kinds of noble metal-semiconductor hybrids, termed as non-symmetric hybrids of noble metal-semiconductor. It particularly refers to metal nanoparticles(or semiconducting quantum dots) at 1-dimensinal(1D) and 2-dimensional(2D) semiconductor(or metal) nanostructures, in contrast to the core/shell and heterodimer nanostructures. First, we discuss the formation dynamics, especially in chemical growth and assembly as well as physical coating and deposition, of non-symmetric noble metal-semiconductor hybrids with nanoparticles on nanostructures. Second, we introduce the plasmon-related applications of these hybrids in heterogeneous catalysis, optoelectronic or photovoltaic devices, all-optical devices, and surface detection or modulation. This review not only provides a comprehensive understanding of the formation mechanisms of the non-symmetric metal-semiconductor hybrid nanostructures, but also may inspire new ideas of novel functional devices and applications based on these systems.
No these hybrid metal-semiconductor hybrids have been employed as fundamental structures in modern technologies. In these hybrids, their cooperative multiple functions attract much attention in recent years because of the interplay of nanoparticles and nanostructures. In this review, we summarize the interplay of nanoparticles and nanostructures in particular kinds of noble metal-semiconductor hybrids, termed as non-symmetric hybrids of noble metal-semiconductor. or metal) nanostructures, in contrast to the core / shell and heterodimer nanostructures. First, we discuss the formation dynamics, especially in chemical growth and assembly as well as physical coating and deposition, of non-symmetric noble metal-semiconductor hybrids with nanoparticles on Second, we introduce the plasmon-related applications of these hybrids in heterogeneous catalysis, optoe lectronic or photovoltaic devices, all-optical devices, and surface detection or modulation. This review not only provides a comprehensive understanding of the formation mechanisms of the non-symmetric metal-semiconductor hybrid nanostructures, but also may inspire new ideas of novel functional devices and applications based on these systems.