论文部分内容阅读
本文提出了一种基于隐马尔可夫模型的二次k-均值聚类算法并实现了对基因序列数据的建模与聚类。算法首先引入了同源基因序列核苷酸比率趋向于一致的生物学特征来对基因序列数据进行初次k-均值聚类,然后利用第一次聚类结果训练出表征序列特征的隐马尔可夫模型,最后采用基于模型的k-均值方法再次聚类。实验结果表明,该算法是可行的,并且具有较好的聚类质量。