论文部分内容阅读
Synthesis of the optoelectronic storage material with structure for coating by nanosized metal and azo-dye was reported. The characterization of composites was made by using transmission electron microscope (TEM), ultraviolet-visible spectrometer (UV-Vis) and thermogravity analyzer (TGA). It is found that, due to the specific structure, in which azo-dye molecules are oriented and adsorbed on the spherical surface of nanosized metal, the absorption maximum of azo-dye methyl orange shift towards shorter wavelength band. The experimental results show that the proposed technique here would offer a promising way to synthesize short wavelength optoelectronic storage material by doping of metal nanoparticles coated with dyes in polymer. Furthermore, the composites based on the structure can present excellent thermal properties suitable for the requirements of optical storage. This new type of material is capable of matching semiconductor laser (GaN) in optoelectronic storage technology.