论文部分内容阅读
电力负荷曲线反映了在一定时间间隔内用户侧消耗的电能,包含了电力系统运行调度与可靠性等重要信息。然而信道错误、仪表故障、设备停运等随机因素导致负荷曲线包含异常数据与缺失值。文中提出一种基于灰色关联分析和模糊聚类(GRA-FCM)的负荷预处理模型。首先通过灰色关联分析确定与待检测日关联度较大的相似样本集,然后采用模糊聚类算法与聚类有效指标得到典型特征曲线,最后对辨识的异常数据进行修正。将所提模型应用于某城市电网SCADA系统负荷预处理中,表明所提模型有很高的准确性和实用性。